A combined finite volumes ‐ finite elements method for a low‐Mach model
نویسندگان
چکیده
منابع مشابه
Chebyshev finite difference method for solving a mathematical model arising in wastewater treatment plants
The Chebyshev finite difference method is applied to solve a system of two coupled nonlinear Lane-Emden differential equations arising in mathematical modelling of the excess sludge production from wastewater treatment plants. This method is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. The approach consists of reducing the ...
متن کاملWhich elements of a finite group are non-vanishing?
Let $G$ be a finite group. An element $gin G$ is called non-vanishing, if for every irreducible complex character $chi$ of $G$, $chi(g)neq 0$. The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$, is an undirected graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G, tin T}$. Let ${rm nv}(G)$ be the set of all non-vanishi...
متن کاملFinite difference method for a combustion model
We study a projection and upwind finite difference scheme for a combustion model problem. Convergence to weak solutions is proved under the Courant-Friedrichs-Lewy condition. More assumptions are given on the ignition temperature; then convergence to strong detonation wave solutions or to weak detonation wave solutions is proved.
متن کاملA Fictitious Domain Method with Mixed Finite Elements for Elastodynamics
We consider in this paper the wave scattering problem by an object with Neumann boundary conditions in an anisotropic elastic body. To obtain an efficient numerical method (permitting the use of regular grids) we follow a fictitious domain approach coupled with a first order velocity stress formulation for elastodynamics. We first observe that the method does not always converge when the Qdiv 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Fluids
سال: 2019
ISSN: 0271-2091,1097-0363
DOI: 10.1002/fld.4706